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Purpose: Surface curvatures are important geometric features for the computer-aided analysis and

detection of polyps in CT colonography (CTC). However, the general kernel approach for curvature

computation can yield erroneous results for small polyps and for polyps that lie on haustral folds.

Those erroneous curvatures will reduce the performance of polyp detection. This paper presents an

analysis of interpolation’s effect on curvature estimation for thin structures and its application on

computer-aided detection of small polyps in CTC.

Methods: The authors demonstrated that a simple technique, image interpolation, can improve the

accuracy of curvature estimation for thin structures and thus significantly improve the sensitivity of

small polyp detection in CTC.

Results: Our experiments showed that the merits of interpolating included more accurate curvature

values for simulated data, and isolation of polyps near folds for clinical data. After testing on a

large clinical data set, it was observed that sensitivities with linear, quadratic B-spline and cubic B-

spline interpolations significantly improved the sensitivity for small polyp detection.

Conclusions: The image interpolation can improve the accuracy of curvature estimation for thin

structures and thus improve the computer-aided detection of small polyps in CTC. VC 2011 American
Association of Physicists in Medicine. [DOI: 10.1118/1.3596529]
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I. INTRODUCTION

Colonic polyps are known precursors to colon cancer.1 Early

detection and removal of polyps may help to reduce the risk

of colon cancer. CT colonography (CTC) is a feasible and

minimally invasive method for the detection of colorectal

polyps and cancer screening.2 Computer-aided detection

(CAD) of polyps has improved consistency and sensitivity

of CTC interpretation and reduced interpretation burden.3

Typically, a CAD system is used to analyze CTC data auto-

matically by use of image analysis and pattern recognition

algorithms, and the locations of detected abnormalities are

reported to a physician.

Polyps are growths from the colonic mucosa, the inner

wall of the colon. The majority are sessile, appearing such as

elliptical protrusions. CAD algorithms may, therefore, detect

polyps through their shape. The primary characteristic of

this shape is its curvature. Indeed, curvature is the basis of

almost all existing CAD schemes for polyp detection.4–13

In general, there are two approaches (geometry/surface-

based and image-based) to computing curvature estimates from

volumetric images. The first approach (geometry/surface-

based) is to fit locally a surface patch to the data, with a known

parameterization in a local coordinate system, and to compute

surface curvatures from the parameterized surface.14–16

Unfortunately, it is difficult to obtain a continuous parametric

representation of the whole surface when its topology is com-

plicated and not known a priori. In addition, the local model

obtained from only surface voxels without using gray value in-

formation tends to become noisy. The second approach

(image-based) works directly on gray value information by

exploiting the local differential structure of the image.17,18 This

approach is also known as a kernel approach, because the par-

tial derivatives are usually computed by convolving the 3D

gray value image with Gaussian-like differential kernels.

In the second approach, the iso surface curvature is defined

as ITT

.
rIk k (the second derivative along the tangential di-

vided by the gradient magnitude) and is successfully applied

to many structures in 3D gray value images,17 but it fails

when applied to thin structures. This is due to the fact that: (1)

on ridges and in valleys, the gradient rIk k is nearly zero; (2)
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Opposite sides of a ridge (or valley) yield curvatures of oppo-

site sign which cancel out after averaging. When this kernel

approach is applied for polyp detection, such problem was

pointed out by many researchers.12,16,19 That is, spurious esti-

mation of curvatures could be observed in two situations: (1)

thin flat folds and small polyps. Here, the “thin” and “small”

are relative to the window size of kernel used for curvature

estimation. (2) when two structures are residing in a same ker-

nel window. The reason is that those thin folds, small polyps,

and boundary of two structures construct ridges and valleys

within the kernel.

To address such a problem, Wijk et al.21 use normalized

convolution to calculate the first and second-order deriva-

tives, where the different structures were differentiated by

using the gradient of a distance transform based on the air-

tissue interface. Similarly, Wang et al.12 directly eliminated

the contribution of voxels of different structures during the

convolution. Zhu et al. applied level-set based adaptive con-

volution22 and Knutsson mapping method19 to improve cur-

vature estimation for colonic polyps. However, only few or

one CT dataset were tested, and more data were needed for

evaluation in their studies.

For polyp detection in CTC, radiologists are usually inter-

ested in the polyps with diameter of 6 mm or larger and the

voxel size of our CTC data is around 0.6� 0.6� 1 mm3.

Therefore, a kernel with window size of 9� 9� 9, which

covers the smallest polyp (6 mm) is selected in our existing

CAD system20 for curvature estimation to reduce the possi-

bility of those aforementioned thin structures occurs. This

kernel size may not be further reduced since the reliable dif-

ferentials of the image are required for curvature estimation.

Since the kernel size cannot be further reduced, we

hypothesized that image upsampling by interpolation may

solve the problem in an alternative way. In this paper, we

present interpolation’s effect on curvature estimation for

polyp detection in CTC. Our assumption is that upsampling

the CT scan in each direction, while keeping the original ker-

nel window size will reduce the risk of thin structures occur-

ring within the kernel volume and will improve the

performance of the kernel method, thereby leading to an

improvement in polyp detection. Linear, quadratic B-spline,

and cubic B-spline the three most commonly used techni-

ques, are evaluated in this paper. We did not include other

more computationally expensive interpolation methods

because of their computational costs.

The paper is organized as follows. The kernel method for

curvature computation and interpolation are described in

Sec. II. We demonstrate in Sec. III. both visually and quanti-

tatively the effectiveness of interpolation. Our concluding

remarks are stated in Sec. IV. A preliminary version of this

paper was presented at the MICCAI 2008 workshop.23

II. METHODS

II.A. Curvature

The curvature ktðpÞ of a point p in the tangent direction t

on a surface can be directly computed from the partial deriv-

atives17,18 of the 3D gray value image as

ktðpÞ ¼ �
tTHt

gk k ; (1)

where g is the gradient, and H is the Hessian matrix. There

exist two mutual orthogonal tangent directions, for which

the curvatures are external. They are called principal direc-

tions, with associated curvatures k1 and k2. Two classical

measures of curvature at a point are the Gaussian curvature

K ¼ k1 � k2 and mean curvature H ¼ k1þk2

2
.

In this paper, the partial derivatives are estimated by the

Deriche filters24 with the smoothing parameters a1 and a2.

We set

f0ðxÞ ¼ c0ð1þ a1 xj jÞe�a1 xj j;

f1ðxÞ ¼ c1xa1
2e�a1 xj j;

f2ðxÞ ¼ c2ð1� c3a2 xj jÞe�a2 xj j: (2)

Here, f0ðxÞ is a smoothing operator, f1ðxÞ a first-derivative

operator, and f2ðxÞ a second derivative operator. The coeffi-

cients c0, c1, c2, c3 are determined from the following nor-

malizations within kernel window size M:

XðM�1Þ=2

�ðM�1Þ=2

f0ðxÞ ¼ 1;

XðM�1Þ=2

�ðM�1Þ=2

xf1ðxÞ ¼ 1;

XðM�1Þ=2

�ðM�1Þ=2

f2ðxÞ ¼ 0 and
XðM�1Þ=2

�ðM�1Þ=2

x2

2
f 2ðxÞ ¼ 1 (3)

Given a 3D image Iðx; y; zÞ, the Gaussian curvature K and

mean curvature H are computed as

K ¼ 1

h2

Ix
2ðIyyIzz � Iyz

2Þ þ 2IyIzðIxzIxy � IxxIyzÞ

þIy
2ðIxxIzz � Ixz

2Þ þ 2IxIzðIyzIxy � IyyIxzÞ

þIz
2ðIxxIyy � Ixy

2Þ þ 2IxIyðIxzIyz � IzzIxyÞ

2
664

3
775 (4)

H ¼ 1

2h3=2

Ix
2ðIyy þ IzzÞ � 2IyIzIyz

þIy
2ðIxx þ IzzÞ � 2IxIzIxz

þIz
2ðIxx þ IyyÞ � 2IxIyIxy

2
664

3
775; (5)

where h ¼ I2
x þ I2

y þ I2
z and the required partial derivatives

are computed using, for example,

Ix ¼ f1ðxÞf0ðyÞf0ðzÞ � Iðx; y; zÞ;

Ixx ¼ f2ðxÞf0ðyÞf0ðzÞ � Iðx; y; zÞ;

Ixy ¼ f1ðxÞf1ðyÞf0ðzÞ � Iðx; y; zÞ: (6)
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Finally, the principal curvatures of a surface at a point are

given by

k1;2 ¼ H6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � K
p

: (7)

The selection of smoothing parameters a1 and a2 depends on

different applications. For polyp detection, the optimal

a1¼ 0.7 and a2¼ 0.1 are set as suggested in Ref. 20.

II.B. The polyp shape criterion

Curvature analysis can be used for polyp detection because

of the uniqueness of curvature of colonic polyps with respect

to the rest of the colonic surface. A normal colon consists of

two primary surfaces: haustra and haustral folds. The haustra

is concave and has elliptical pit curvature; the haustral folds

have a saddle point curvature. However, a polyp is convex

and thus has elliptical peak curvature. Thus, the basis of cur-

vature-derived shape discriminators for polyp detection is

going through each vertex on the colonic surface and tagging

vertices that are classified as elliptical peaks (see Table I).

II.C. Image resolution’s effect on curvature estimation

Image resolution has impact on the kernel method for cur-

vature measurement. A continuous circle with radius r is

used as an example. With baseline image resolution (voxel

size without interpolation) set to h and interpolation factor f,

a discrete circle with discrete radius rd � r
h=f results. For

curvature measurement of a continuous arc of size Dh rad,

the corresponding discrete arc should consist of M discrete

samples, where M is the kernel window size. M is related to

Dh and rd by

M � rdDh ¼ r

h=f
Dh: (8)

This shows that in general a larger window size M is

required for a smaller voxel size. However, a kernel with a

large window size will increase the possibility of encounter-

ing the aforementioned thin structures. In this paper, the

voxel size h/f should not be reduced by interpolating without

limit since the window size M is fixed (9� 9� 9). Other-

wise, the larger the interpolation factor that is applied, the

less information is included in the kernel with fixed size M.

The kernel approach will not produce reliable derivatives for

curvature estimation. Therefore, without loss of generality,

image interpolation by integer factors 2 and 4 are considered

in our simulated data. For computational efficiency, interpo-

lation by a factor of 2 is considered in our clinical CTC data.

II.D. B-spline interpolation

By using B-spline model, an interpolated value of f ðxÞ at

some coordinate x in a space of dimension q is defined as

(Ref. 25)

f ðxÞ ¼
X
k2Zq

ckuðx� kÞ 8x 2 Rq ;

where the ck is B-spline coefficients, and the basis function

uðxÞ is a tensor product of univariate B-splines of degree n

uðxÞ ¼ bnðx1Þ:::bnðxqÞ
The univariate B-splines are defined as,

bnðxÞ ¼
Xnþ1

k¼0

ð�1Þkðnþ 1Þ
ðnþ 1� kÞ!k!

� nþ 1

2
þ x� k

�n

þ

8x 2 R ; 8n 2 N;

where ðxÞnþ is the one-sided power function

ðxÞnþ ¼

0;

1=2;

1;7

x0
þxn

8>>>><
>>>>:

n ¼ 0 ^ x < 0

n ¼ 0 ^ x ¼ 0

n ¼ 0 ^ x > 0

n > 0:

Given image array f ðiÞ; the coefficients ck can be determined

by deconvolving such that the interpolated value f ðxÞ fits the

voxel values exactly: f ðxÞjx¼i ¼ f ðiÞ:
• Degree n¼ 0: The B-spline of smallest degree n¼ 0 is

almost identical to the nearest-neighbor interpolation.
• Degree n¼ 1: The B-spline function b1 is also called linear

interpolation.
• Degree n¼ 2: The B-spline function b2 is also called quad-

ratic B-spline interpolation.

TABLE I. Curvature classification based on principal curvature values k1;2.

Class Shape H k1;2 K

Elliptic Pit >0 Same sign >0

Elliptic Peak <0 Same sign >0

Hyperbolic Saddle Varies Opposite sign <0

FIG. 1. Interpolation implemented in our CAD system.

4278 Liu et al.: Improved CAD for CTC using Interpolation 4278

Medical Physics, Vol. 38, No. 7, July 2011



• Degree n¼ 3: The B-spline function b3 is also called cubic

B-spline interpolation.

In this paper, linear, quadratic B-spline and cubic B-

spline interpolations were implemented in ITK medical

image processing library26 in a separable fashion (x, y and z
interpolated independently) and were evaluated for curvature

estimation.

II.E. CAD system with interpolation

The main stages of our CAD system with interpolation

(Fig. 1) include: (1) The colon is segmented by a region

growing algorithm to identify the air- and contrast-filled co-

lonic lumen7 (2) For each point on the segmented colon sur-

face, we locally upsample the image by interpolation. The

curvatures are analyzed and filtered based on Table I. The

filtered surface vertices are then clustered based on connec-

tivity. The clusters are potential polyp candidates. (3) The

centroid of each cluster is used as a seed for polyp candidate

segmentation. (4) Characteristic features, such as intensity,

shape and texture, are calculated from the segmented candi-

date. (5) The candidate pool is a large set, including true pos-

itive (TP) and false positive (FP) detections. Finally, a

decision of true polyp or FP is made by a support vector

machine (SVM) classifier.27 Note that only the subvolume

around each voxel on the colon surface is interpolated for

curvature analysis at the second stage, not the entire CTC

image.

Linear, quadratic B-spline and cubic B-spline25 interpola-

tions were evaluated for the performance of polyp detection.

The interpolation has been employed in the CAD scheme8

for polyp detection. However, our work is different with8 in

two ways. First, in Ref. 8, linear interpolation was only

applied to the adjacent slices (z) to get isotropic volume. We

upsample the sub image by three interpolation methods in x,

y, and z directions. Second, the entire axial CTC image was

interpolated at the first step for further analysis in Ref. 8,

while our method locally upsamples the sub image (a small

image around each voxel on the colon surface) by interpola-

tion for curvature estimation.

III. RESULTS

In this section, the performance of interpolation is assessed

on both simulated images as well as clinical CTC data.

III.A. Single sphere simulation

A sphere [Fig. 2(a)] with a radius of r¼ 0.5 is given

by the parameterization (r cos u sin v; r sin u sin v; r cos v),

u 2 ½0; 2p�; v 2 ½0; p�: The initial image intensity of the

sphere is 100, and voxel size is 0.1� 0.1� 0.1. Gaussian

kernel at r¼ 3 is applied to smooth the initial image. This

sphere with a digital radius rd ¼ 5 voxels (rd ¼ r=0:1) simu-

lated a 6 mm polyp in diameter because voxel size of CTC is

around 0.6� 0.6� 1 mm3 and a 6 mm polyp roughly occu-

pies ten voxels in x and y directions.

For evaluation of estimation quality, curvature error Ek

(Ref. 28) is defined as

Ek ¼

ð
c2S

qðcÞðk
^
ðcÞ � ktÞ

2

dc

k2
t

� 100%; (9)

where k
^
ðcÞ is the curvature estimated at voxel c, and qðcÞ is

the probability density function. Curvature error Ek is an

average over all points on surface S, specified as a fraction

of the squared true curvature kt.

Ek is composed of two parts. The curvature bias, Bk,

expresses the accuracy in analogy with the bias known from

measurements in physics.

Bk ¼

ð
c2S

qðcÞðk
^
ðcÞ � ktÞdc

kt
� 100%: (10)

The second component of the curvature error is the curva-

ture deviation Sk, quantifying the precision of a curvature

estimation method.

FIG. 2. Sphere simulation. (a) A sphere with a radius of r¼ 0.5, which is

comparable to a 6 mm polyp. Curvatures of all surface points are examined.

(b) A pair of spheres with a radius of 0.5. Curvatures of the surface points

close to each other (highlighted regions) are examined.

TABLE II. Mean curvature error EH , bias BH , and deviation SH and Gaussian curvature error EK , bias BK , and deviation SK on the sphere surface, with and

without interpolations. Subscript 2 and 4 corresponds to interpolation by a factor of 2 or 4, respectively.

None (%) Linear2 (%) Quadratic2 (%) Cubic2 (%) Linear4 (%) Quadratic4 (%) Cubic4 (%)

EH 0.5 0.36 0.36 0.36 0.37 0.37 0.37

BH 4.28 1.89 1.90 1.90 0.67 0.68 0.68

SH 5.65 5.72 5.71 5.71 6.09 6.01 6.02

EK 2.24 1.55 1.55 1.55 1.55 1.52 1.52

BK 9.06 4.13 4.15 4.16 1.68 1.71 1.71

SK 11.91 11.75 11.72 11.72 12.34 12.20 12.22
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Sk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
c2S

qðcÞðk
^
ðcÞ � kÞ

2

dc

s

kt
� 100%; (11)

where k denotes the estimated curvature averaged over all

voxels on surface S.

The bias and deviation relate to the curvature error as

E2
k ¼ B2

k þ S2
k : (12)

Gaussian curvature and mean curvature are computed by

Eqs. (4) and (5) for all points on the sphere surface. The ker-

nel window size is 9� 9� 9, which is roughly equal to the

sphere size. The true values are k1 ¼ k2 ¼ 1=r ¼ 2, K ¼ 4,

and H ¼ 2. Too much upsampling will cause more blurring,

therefore interpolation by an integer factor 2 and 4 are eval-

uated. Gaussian curvature error EK , bias BK , deviation SK ,

mean curvature error EH, bias BH , and deviation SH with and

without interpolation are summarized in Table II. We found

that: (1) curvature errors are dramatically reduced with inter-

polation and are similar for different interpolation factors. (2)

Curvature bias is reduced with interpolation and further reduced

with higher interpolation factor. (3) Curvature deviations are

the same or slightly increased with interpolation. (4) The per-

formances are similar for all three interpolation methods.

III.B. Double sphere simulation

To directly address the issue of adjacent surface interfer-

ence,such as polyps that lie on or near haustral folds, a sec-

ond spherewith a radius of r¼ 0.5 [Fig. 2(b)] is placed

close to the first sphere in Fig. 2(a). This assures that when

the kernel is placed at the edge points that are closest to

each other, the kernel will contain both spheres. Once

again, Gaussian smoothing with r¼ 3 was applied and cur-

vatures of points on the surface close to each other [high-

lighted regions in Fig. 2(b)] are examined with and without

interpolations. Gaussian curvature error EK , bias BK , devia-

tion SK and mean curvature error EH, bias BH , deviation SH

with and without interpolation are summarized in Table III.

The results are similar to those from the one sphere experi-

ments except that the curvature deviations are also reduced

with interpolations.

Figure 3 shows plots of themean and Gaussian curvatures

along the points in thexy-plane as a function of u. [Fig. 2(b)

shows the path ofplotsstarting at the point labeled A.] For the

two spheres, kernel method without interpolation causes a

large error in the mean and Gaussian curvature estimates at

the location closest to the additional sphere, corresponding to

the spikes in Figs. 3(a) and 3(b). However, curvature estima-

tion with linear interpolation by a factor of 2 is more accurate.

TABLE III. Mean curvature error EH , bias BH , and deviation SH and Gaussian curvature error EK , bias BK , and deviation SK on double spheres measured on the

highlighted regions in Fig. 2(b), with and without interpolation.

None (%) Linear2 (%) Quadratic2 (%) Cubic2 (%) Linear4 (%) Quadratic4 (%) Cubic4 (%)

EH 1.17 0.42 0.41 0.41 0.39 0.37 0.37

BH 4.44 1.52 1.54 1.55 0.37 0.39 0.39

SH 9.86 6.31 6.23 6.22 6.24 6.10 6.10

EK 5.71 1.79 1.75 1.74 1.6 1.53 1.53

BK 9.34 3.38 3.43 3.43 1.06 1.10 1.09

SK 21.99 12.95 12.77 12.75 12.60 12.33 12.32

FIG. 3. Comparison of mean curvatures (a) and

Gaussian curvature (b) in xy-plane as a function of

u 2 ½0; 2p�. Kernel method without interpolation causes

a large error in mean curvature [spike in (a)] and Gaus-

sian curvature [spike in (b)] at the location closest to

the additional sphere. Curvature estimation with linear

interpolation by a factor of 2 is more accurate.
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III.C. Large clinical data set

For quantitative evaluation, the performance of interpola-

tion’s effect on polyp detection in CTC is evaluated on CT

scans of 1186 patients. The use of this patient data was

approved by our institution’s Office of Human Subjects

Research. Every patient was scanned twice—once supine

and once prone. Each scan was done during a single breath

hold using a four-channel or eight-channel CT scanner (Gen-

eral Electric Light Speed or Light Speed Ultra, GE Health-

care Technologies, Waukesha, WI). CT scanning parameters

included 1.25–2.5 mm section collimation, 15 mm table

speed, 1 mm reconstruction interval, 100 mAs, and 120 kVp.

These scans are divided into a training set (containing

395 patients) and a test set (containing 791 patients). There

are 108 and 267 colonoscopy-confirmed polyps measuring

6–9 mm in the training set and test set, respectively. Since

current detection algorithms perform very well on polyps 10

mm or larger,2 and small polyps are more likely to have

errors in curvatures as we described earlier, we focus on the

detection of 6–9 mm polyps. To some extent, improving the

detection probability of 6–9 mm polyps is the main target of

current CTC CAD research.

The simulated sphere results show similar performance

for interpolation by a factor of 2 and 4. For computational ef-

ficiency, linear, quadratic B-spline, and cubic B-spline inter-

polations by a factor of 2 are evaluated on the large clinical

CTC data. In the training stage, colon segmentation, identifi-

cation of suspected polyps, and polyp segmentation are

applied to the training data. After that, quantitative features

are then computed for each suspected polyp. A progressive

feature selection is run on all patients in the training set to

select three pertinent features for one SVM. Then a commit-

tee optimization process is performed to form a committee

of seven SVMs.27 In the test stage, for any given data, the

detections and features are fed into the SVM committee and

confidence level for each detection, SVM vote, are then

determined for classification. By plotting the true positive

fraction (TPF) against the false positive fraction (FPF) at the

different SVM votes, a free response receiving operation

characteristic (FROC) curve is obtained.

The FROC curves with and without interpolations on the

6–9 mm polyps on test data (containing 267 polyps) are

compared [Fig. 4(a)]. Our CAD system withoutinterpolation

successfully detected 190 out of 267 polyps with 147 false

positives per patient before classification. The SVM classi-

fier achieved 55% (146 out of 267) sensitivity at ten false

positives per patient (93% reduction). The CAD system with

linear interpolation by two detected 217 out of 267 polyps

with 220 false positives per patient at the initial stage. The

SVM classifier achieved 62% (165 out of 267) sensitivity at

10 FP per patient (95% reduction). The sensitivities with

interpolation are increased by 7%–11% at a rate of ten false

positive detections per patient. More quantitative results are

summarized in Table IV.

FIG. 4. (a) FROC curves for 6–9 mm polyps on test data which show no interpolation and three interpolations. The curves show the benefits of the interpola-

tion for small polyps. (b) JAFROC FOM for different modalities. (modalities 1–4 represent CAD without interpolation, CAD with linear, quadratic B-spline and

cubic B-spline interpolation, respectively.) Error bars present 95% confidence intervals.

TABLE IV. Comparing sensitivities at 10 FP per patient for CAD without

and with interpolations for 6–9 mm polyps on test data.

CAD

w/o

Interpolation

CAD

with linear

Interpolation

CAD

with quadratic

B-spline

Interpolation

CAD

with Cubic

B-spline

Interpolation

Sensitivity 55%

(146/267)

62%

(165/267)

66%

(176/267)

65%

(174/267)

TABLE V. Intermodality differences and 95% confidence intervals of JAFROC

FOM. If the 95% CI does not include 0, then the corresponding modality

pairs are significantly different.

Inter-Modality Difference of FOM and 95% CI

None and Linear �0.069(�0.119,�0.018)a

None and Quadratic B-spline �0.051(�0.101,�0.001)a

None and Cubic B-spline �0.050(�0.100,�0.002)a

Linear and Quadratic B-spline 0.018(�0.032,0.068)

Linear and Cubic B-spline 0.017(�0.027,0.053)

Quadratic B-spline and Cubic B-spline 0.007(�0.035,0.070)

aSignificantly different.
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The FROC data are analyzed by using the jackknife

FROC(JAFROC),29 implemented in the software JAFROC ver-

sion 2.3.30
JAFROC computes a figure of merit (FOM),

which is defined as the probability that a true lesion rating

exceeds all false lesion rating in a normal case. The com-

putation of FOM is identical to calculation of the Wil-

coxon test statistic for two samples.31 Figure 4(b) shows

the FOM of all four modalities (CAD without interpola-

tion, linear, quadratic B-spline, and cubic B-spline inter-

polation) and the intermodality difference between FOMs

with 95% confidence intervals are summarized in Table V.

We found that CAD with any of the methods of interpolation

significantly improved the sensitivity of polyp detection.

There is no significant difference among the three methods.

Two examples of polyps missed by CAD without interpo-

lation but found with cubic B-spline interpolation are shown

in Fig. 5. The interpolation benefits the small polyps, at the

same time, the FROC curves with and without interpolations

on the 10 mm or larger polyps (Fig. 6) show that the interpo-

lations do not affect the performance for large polyps.

IV. DISCUSSION

In this paper, we were focusing on the kernel method for

curvature estimation and the goal of this paper was to present

the interpolations’ effect on curvature estimation in com-

puter-aided diagnosis of polyp in CTC. In this specific appli-

cation, surface curvatures are important geometric features.

However, the general kernel approach for curvature compu-

tation could yield erroneous results for thin structures such

as folds in the colon wall, for small (6–9 mm) polyps, and

for polyps that lie on haustral folds. Those erroneous curva-

tures will reduce the performance of polyp detection. This

paper compares three commonly used interpolation techni-

ques’ effect on curvature estimation, including linear, quad-

ratic B-spline, and cubic B-spline interpolations. The utility

of improved curvature estimates were confirmed by the

CAD results, where the use of interpolation led to an

increase in the standalone sensitivity of the CAD system for

detecting 6–9 mm polyps of 7%–10% at ten FP per patient

on a large screening population. This improved CAD per-

formance demonstrates that this incremental improvement in

the curvature estimate can have a substantial impact on

CTC-CAD performance.

Since curvature is computed from the partial derivatives

of gray-scale images [Eq. (1)], the fundamental reason inter-

polation can improve curvature accuracy is because the esti-

mation accuracy of partial derivatives is improved by

interpolation. Similar to our work, Oda et al.32 proposed a

method to improve the accuracy of partial derivatives by

interpolating intensity by curve fitting and applied it for

polyp detection. A quadratic polynomial curve was fitted to

the neighborhood of each voxel in the colonic wall for better

estimation of the Hessian matrix. Then, a detection response

was computed based on the eigenvalues of the Hessian ma-

trix for polyp detection.

An unintended negative effect of interpolating is the

increase in the number of false lesions that are detected. We

ran our CAD system on one illustrative case (one of the clin-

ical data described in Sec. III C) and the estimated curva-

tures around one polyp are shown in Fig. 7. All vertices on a

given iso-surface were classified according to their curvature

type (Table I), where elliptical peak (potential polyp) was

represented by bright regions, elliptical pit (potential haus-

tral) by dark regions and saddle (potential haustral fold) by

grey regions. We can see that for the polyp next to a fold

[Fig. 7(a)], the detected lesion area inaccurately leaks onto

FIG. 5. Polyps missed without interpolation but found

with cubic B-spline interpolation at 10 FP per patient:

(a) an 8 mm ademoma in sigmoid colon and (b) a 6 mm

adenoma in sigmoid colon.

FIG. 6. FROC curves for 10 mm or larger polyps which show CAD perform-

ance with and without interpolation on test data. Three different interpola-

tion methods are shown (linear, quadratic B-spline, cubic B-spline). Unlike

the situation for detecting the small polyps, the curves show that interpola-

tion does not significantly affect the performance of CAD for detecting large

polyps.
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the fold [Fig. 7(b)] when no interpolation is applied. How-

ever, when cubic B-spline interpolation is applied, the lesion

is accurately separated from the fold [Fig. 7(c)]. This exam-

ple demonstrates one of the problem situations described

earlier (polyp next to fold) and how interpolation correctly

isolates the polyp. At the same time, the increased number of

false lesions is seen by comparing Figs. 7(b) and 7(c).

Quantitatively, for example, for the test set, which has

267colonoscopy-confirmed polyps in 6–9 mm, our original

CAD system successfully detected 190 out of 267 polyps at

a rate of 147 false positives per patient at the initial stage.

The SVM classifier achieved 55% (146 out of 267) sensitiv-

ity at ten false positives per patient (93% reduction). The

CAD system with linear interpolation by a factor of 2

detected 217 out of 267 polyps at a rate of 220 false positives

per patient initially. The SVM classifier achieved 62% (165

out of 267) sensitivity at ten false positives per patient (95%

reduction). Our results (Fig. 4 and Table IV) show that those

additional false detections are discarded in the classification

step and do not reduce the performance of our CAD system.

This is mainly because those features (such as mean curva-

ture, Gaussian curvature, aspect ratio, compactness, and

curvedness) selected for the SVM classifier are curvature-

related and thus interpolation lead to a better classification.

Image resolution affects kernel-based curvature estima-

tion. According to Eq. (8), a kernel with a larger window

size is chosen for smaller image resolution. However, a

larger kernel window will increase the possibility of encoun-

tering thin structures. In this paper, since the smallest target

polyp size is 6 mm, and the voxel size of CTC is around

0.6� 0.6� 1 mm3, we set the kernel to 9� 9� 9 to cover

the smallest polyp. The image should not be upsampled

extremely since the window size is fixed. The more the

image is upsampled, the less information is included in the

kernel. The kernel approach will not get reliable derivatives

for curvature estimation. Therefore, interpolation by a factor

of 2 is considered in our CTC data.

Recent advances in CTC improved CAD performance with

higher sensitivity in many ways. Scatter correction33,34 was

used in image preprocessing to reduce pseudo-enhancement

phenomenon introduced by high-density orally administered

contrast agents in fecal-tagging CTC and the method achieved

an 8% improvement for detecting polyps 6–9 mm in size.

A new dimensionality reduction classifier, diffusion map and

local linear embedding (DMLLE),35 was developed for false

positives reduction and yielded a 10% improvement for 6–9

mm polyps. Konukoglu36 proposed polyp enhancing level sets

method to improve the performance of CTC CAD algorithms,

especially for smaller polyps. CAD performance increased

5%–10% when higher quality CTC data was tested.37 In addi-

tion, electronic cleansing,38 logistic regression,39 massive-

training artificial neural network (MTANN),40 supine-prone

correspondence,41 and feature-guided analysis42 have been

utilized to improve CAD performance by false positive reduc-

tion. While each improvement alone increases sensitivity only

a small amount, it is possible to get a clinically useful CAD

system with high performance if all of these efforts are

combined.

Polyps in 6–9 mm size range are important for guidingpa-

tient care and some investigators believe patients with such

polypscan be placed into a surveillance population rather than

undergo immediate polypectomy. Patients in the surveillance

population would undergo more frequent CTC evaluation

than those returning to the screening population. Such polyps

are harder to detect for both radiologists and CAD system.

Other studies43,44 have achieved sensitivities and false posi-

tive rates comparable with those we report (Table IV).

In summary, this paper presents the interpolations’ effect

on curvature estimation in computer-aided diagnosis of

polyp in CTC. We conclude from both simulated data and

real data that any one of the three interpolations significantly

improved the sensitivity of CAD for polyp detection in CTC.

Although there were no significant differences among those

three interpolations, quadratic B-spline or cubic B-spline is

preferred in our application.
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FIG. 7. Clinical data example with a polyp present (a). Curvature classification without (b) and with cubic B-spline interpolation (c). Potential lesions are rep-

resented by bright regions. A normal colonic fold that abuts the polyp is indicated with an arrow in (a).
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